文章编号:1004-4213(2010)12-2183-7

掺有 Ni²⁺的 α-Al₂O₃ 晶体的基态精细光谱、 晶体局域结构和 Jahn-Teller 效应*

殷春浩,焦杨,神干,李富强,朱姗姗

(中国矿业大学理学院,江苏徐州 221008)

摘 要:应用晶体场理论和不可约张量算符方法构造了 $3d^2/3d^8$ 态离子在 C_{3v} 对称晶场中包含自 旋-轨道相互作用、自旋-自旋相互作用、自旋-其它轨道相互作用和其它轨道-其它轨道相互作用四 种微观磁效应的 45 阶可完全对角化的能量哈密顿矩阵.利用该矩阵,计算了 Ni^{2+} : α Al_2O_3 晶体 的光谱精细结构和晶体局域结构,深入研究了 Ni^{2+} : α Al_2O_3 晶体的自旋-轨道相互作用、自旋-自 旋相互作用、自旋-其它轨道相互作用和其它轨道-其它轨道相互作用和它们对光谱精细结构的影响及 Jahn-Teller 效应.理论计算值和实验值相符合.研究发现,掺杂没有改变晶体的对称性、同时 发现并合理解释了 Ni^{2+} 对 α Al_2O_3 晶体基态精细光谱中 Jahn-Teller 效应的存在机理.

关键词:α-Al₂O₃;掺杂;晶体局域结构

中图分类号:7170C;7630F

文献标识码:A

doi:10.3788/gzxb20103912.2183

0 引言

单晶 α Al₂O₃ 晶体是一种重要的氧化物光学晶 体和优良的激光晶体,具有较高的热导率和较低的 线膨胀系数^[1].其结构中存在着缺陷与空位,容易通 过掺杂、离子注入等技术调控晶体的某些性能和指 标^[2].当在晶体中掺入 Ti³⁺、Cr³⁺、V³⁺、Co²⁺、Ni²⁺ 等过渡金属离子后,这些离子将取代 Al³⁺离子成为 中心离子,引起晶体局域结构发生变化,影响晶体 的光学和磁学性质^[3-6].近年来,Ni²⁺:α Al₂O 晶体 在半导体制备、复合镀层工艺、等离子技术、纳米复 相陶瓷的制备等工业产品制造和技术中都有广范的 应用,特别是作为催化剂被广范的应用在工业产品 的制备中.利用过渡金属离子和基质晶体之间的相 互作用的调变来控制其结构和性能取得了令人兴奋 的进展^[6-8].

基质晶体 α Al₂O₃ 中络离子(AlO₆)⁹的局域空间结构近似为 C_{3v}对称. 掺入 Ni²⁺杂质离子后,它们取代 Al³⁺离子成为中心离子. 由于 Ni²⁺离子与Al³⁺离子的半径、质量、电负性和电子云分布存在着差异,进入基质晶体后,必将引起晶体局域结构发生畸变,造成光谱的精细结构发生变化^[3]. 而 Ni²⁺

离子在 α Al₂O₃ 晶体中的光谱与其所处的晶体场环 境密切相关,研究其光谱能得到晶体材料的光学、磁 学、微观结构、高压行为以及相变等大量的微观信 息.本文在考虑自旋-轨道(SO)相互作用的基础上, 进一步考虑到前人忽略的自旋-自旋(SS)相互作用、 自旋-其它轨道(SOO)相互作用和轨道-轨道相互作 用(OO)和 Trees 修正,应用晶体场理论和不可约张 量方法构造了三角对称晶场中 3d²/3d⁸ 态离子的 45 阶可完全对角化的能量哈密顿矩阵,计算了 Ni²⁺: α Al₂O₃ 晶体的精细光谱,理论计算值和实验值相 符.结合点电荷模型和配体平面移动模型,研究了 Ni^{2+} 离子掺入到 α Al₂O₃ 晶体后引起的局域结构的 畸变,掺杂没有改变晶体结构的对称性, Ni²⁺ : α Al₂O₃ 晶体的光谱精细结构受自旋-轨道(SO)相互 作用的影响最大,其次依次为自旋-自旋(SS)相互作 用、自旋-其它轨道(SOO)相互作用和轨道-轨道 (OO)相互作用. 发现了 Ni²⁺: α-Al₂O₃ 晶体的基态 能级中存在着 Jahn-Teller(J-T)效应. 合理解释了 Ni²⁺: α-Al₂O₃ 晶体基态精细光谱中 J-T 效应的存 在机理.

1 理论方法

Ni²⁺离子属于 3d⁸ 电子组态,处于相同的近似 为 C_{3v}对称的晶场中,如图 1.

^{*} 国家教育部留学回国人员实验室建设科研基金(2003.18) 和中国矿业大学优秀创新团队基金(2004ZCX012)资助 Tel:029-88204271 Email:chunhaoyin@ sohu.com 收稿日期:2010-09-09 修回日期:2010-10-29

图 1 Ni^{2+} : Al_2O_3 晶体的局域结构 Fig. 1 The local structure of Ni^{2+} : Al_2O_3

在晶体场理论中,3d²/3d⁸ 态离子的哈密顿量 可表示为^[4-5]

Η	$H = H_{\rm E}(B,C) + H_{\rm CF}(B_{20}, B_{40}, B_{43}) + H_{\rm SO}(\xi)$	+
	$H_{\text{Trees}}(\alpha) + H_{\text{SS}}(M_0, M_2) + H_{\text{SOO}}(M_0, M_2)$	+
	$H_{00}(M_0,M_2)$	(1)

式中 $H_{\rm E}$ 为静电库仑相互作用哈密顿量, $H_{\rm CF}$ 为周 围环境对离子产生的晶场势哈密顿量, $H_{\rm Trees}$ 为 Trees 修正哈密顿量, $H_{\rm SO}$ 为自旋-轨道相互作用哈 密顿量, $H_{\rm SS}$ 为自旋-自旋相互作用哈密顿量, $H_{\rm SOO}$ 为自旋-其它轨道相互作用哈密顿量, $H_{\rm OO}$ 是轨道-轨 道相互作用哈密顿量, 统称为微观磁相互作用哈密 顿量, B和C是 Racah 参量; B_{20} , B_{40} , B_{43} 为三角对 称晶场中的三个晶场参量, ε 为自旋轨道耦合参量, α 为 Trees 修正参量, M_0 和 M_2 是微观磁相互作用 参量. 采用中间场基函数 $l^N \alpha SLJM_J$, 利用 Racah 不可约张量算符法, 可构造一个 45 阶的可完全对角 化的哈密顿矩阵. 其中 $H_{\rm E}$ 、 $H_{\rm CF}$ 、 $H_{\rm SO}$ 、 $H_{\rm Trees}$ 、 $H_{\rm SS}$ 的 计算公式见文献[6-8].

自旋-其它轨道相互作用矩阵元表示为

$$\langle d^{N}vSLJM_{J} | H_{SOO} | d^{N}v'S'L'J'M_{J}' \rangle =$$

 $(-1)^{S+L'-J}W(SLS'L';J_{1})\langle d^{N}\alpha SL \cdot$
 $\parallel T^{(11)} \parallel d^{N}\alpha'S'L' \rangle$ (2)
式中 $\langle d^{N}\alpha SL \parallel T^{(11)} \parallel d^{N}\alpha'S'L' \rangle$ 为约化矩阵元

$$W(SLS'L';J_1) = (-1)^{S+L+L'+S'} \begin{pmatrix} S & L & J \\ L' & S' & 1 \end{pmatrix}$$

式中 (....) 为 6*j* 符号.

轨道-轨道相互作用矩阵元表示为

 $\langle d^{N}vLSM_{L}M_{S} | H_{00} | d^{N}v'L'S'M_{L}M_{S} \rangle = \{ aL(L + aL) \}$

1)+ $\beta G(R_5)$ +N δ } $\delta_{w'}\delta_{LL'}\delta_{SS'}\delta_{M_SM_S'}\delta_{M_LM_{L'}}$ (3) 式中 α =-14 M_0 +12 M_2 , β =-360 M_2 , δ =84 M_0 + 168 M_2 , $G(R_5)$ =[v(12-v)/2-2S(S+1)]/6. 高辈 数 v 列于表 1.

表 1 d^{2/8} 电子的高辈数^[9]

Table 1	Swniority	numbers	of $d^{2/8}$	ion	configuration
---------	-----------	---------	--------------	-----	---------------

^s L	³ F	³ P	1 S	$^{1}\mathrm{D}$	1 G			
υ	2	2	0	2	2			
利用 $\langle l^{N}_{\alpha}SLJM_{J} = \sum_{M_{0}M_{J}} C(SLM_{S}M_{L}, JM_{J})$ •								

 $|l^{N} \alpha SLM_{s}M_{L}\rangle$ 式可将基函数 $|l^{N} \alpha SLM_{s}M_{L}\rangle$ 转化为 $|l^{N} \alpha SLJM_{L}\rangle$,从而得到以 $|l^{N} \alpha SLJM_{L}\rangle$ 为基函数的 轨道-轨道相互作用矩阵元.其中 $C(SLM_{s}M_{L}, JM_{J})$ 为 Clebsch-Gordan 系数.

利用矩阵元计算式可得到 3d²/3d⁸ 态离子在三 角对称晶场中相应哈密顿量的全部矩阵元,构造出 一个可完全对角化的 45 阶微扰哈密顿矩阵.根据群 理论,该矩阵可约化为 3 个 15 阶矩阵.在无外磁场 的作用下,其中有两个矩阵的本征值是完全简并的. 对角化这三个能量矩阵,可获得 3d²/3d⁸ 态离子在 三角对称晶场中的能量本征值,可求出相应的光谱 精细结构的能级.

2 计算过程及结果

2.1 Ni²⁺: α-Al₂O₃ 晶体基态精细光谱结构的计算

45 阶微扰哈密顿矩阵的可完全对角化矩阵为 两个 Racah 参量 $B_{x}C$ 和三个晶场参量 B_{20} , B_{40} , B_{43} 以及自旋-轨道耦合参量 ξ 、Trees 修正参量 α 、磁相 互作用参量 M_0 和 M_2 的函数.在大量的拟合计算过 程中,采用赵的半自洽场 d 轨道模型^[10],当自由 Ni²⁺离子掺入晶体后,由于电子云的伸展,这些参量 会缩小.按照平均共价键理论,这种效应可用平均共 价因子 N 描述,即

$$B\!=\!N^4B_{\scriptscriptstyle 0}$$
 , $C\!=\!N^4C_{\scriptscriptstyle 0}$, $lpha\!=\!N^4lpha_{\scriptscriptstyle 0}$, $<\!r^2\!>\!=\!N^2<\!r^2\!>_{\scriptscriptstyle 0}$, $<\!r^4\!>\!=\!N^2<\!r^4\!>_{\scriptscriptstyle 0}$

其中 B_0 、 C_0 、 α_0 、 $< r^2 >_0$ 和 $< r^4 >_0$ 分别为自由 离子的 Racah 参量、Trees 修正参量和径向期待值. 对于晶体中的离子,亦采用近似方法计算 M_0 和 $M_2: M_0 = f^2 M_0^0, M_2 = f^2 M_2^0, f$ 为轨道缩减因子, M_0^0 和 M_2^0 为自由离子的参量值.自由离子的参量值列 于表 2.

表 2 自由 Ni²⁺离子的参量值^[4,10-11]

 Table 2
 Parameters of Ni²⁺ in free-ion state

Free-ion	B_0/cm^{-1}	C_0/cm^{-1}	α_0 / cm^{-1}	${\pmb\xi}_0/cm^{-1}$	$<\!r^2\!>_{\scriptscriptstyle 0}/{ m au}$	$< r^4 >_0 / au$	$M_{0}{}^{0}/{ m cm}^{-1}$	$M_2{}^{_0}/{ m cm}^{-1}$
Ni ²⁺	1 208	4 459	140	-636	1.890 4	13.404 3	0.339 3	0.026 4

利用光谱的实验值来拟合所需的参量,经过大量的拟合计算,得到 Ni^{2+} : α -Al₂O₃ 晶体的参量. 拟合计算得到的参量值列于表 3.

表 3 Ni²⁺ : α-Al₂O₃ 晶体的拟合参量 Table 3 Calculated parameters of Ni²⁺ : α-Al₂O₃ crystal

Crystal	N	f	$B_{\rm 20}/\rm cm^{-1}$	$B_{40}/{ m cm}^{-1}$	B_{43}/cm^{-1}
Ni^{2^+} : α - $\mathrm{Al}_2\mathrm{O}_3$	0.90	0.94	1434	11848	17443
将拟合的	参量	代入ī	可完全对	角化三角	对称的哈

密顿矩阵中进行对角化计算,可以得到含有四种微观磁相互作用和 Trees 修正下 Ni²⁺: α -Al₂O₃ 晶体 光谱能级.分别计算了:1)考虑自旋-轨道(SO)相互 作用、自旋-自旋(SS)相互作用、自旋-其它轨道 (SOO)相互作用和轨道-轨道相互作用(OO)的 Ni²⁺: α -Al₂O₃ 晶体的基态光谱能级;2)考虑自旋-轨道(SO)相互作用、自旋-其它轨道(SOO)相互作 用和轨道-轨道相互作用(OO)的 Ni²⁺: α -Al₂O₃ 晶 体的基态光谱能级;3)考虑自旋-轨道(SO)相互作 用、自旋-自旋(SS)相互作用、轨道-轨道相互作用 (OO)的Ni²⁺: α-Al₂O₃晶体的基态光谱能级;4)考 虑自旋-轨道(SO)相互作用、自旋-自旋(SS)相互作 用和自旋-其它轨道(SOO)相互作用的Ni²⁺: α-Al₂O₃晶体的基态光谱能级;5)仅考虑自旋-轨道 (SO)相互作用的Ni²⁺: α-Al₂O₃晶体的基态光谱 能级;6)利用 $B_{20} = 0, B_{40} = 11$ 848 cm⁻¹, $B_{43}^{ubic} = -\sqrt{10/7}B_{40}^{cubic}$ 公式将三角场退化成立方场仅考虑自 旋-轨道(SO)相互作用的Ni²⁺: α-Al₂O₃晶体的基 态光谱能级;7)利用 $B_{20} = 0, B_{40} = 11$ 848 cm⁻¹, $B_{43}^{ubic} = -\sqrt{10/7}B_{40}^{cubic}$ 公式将三角场退化成立方场的 不考虑四种微观磁相互作用的Ni²⁺: α-Al₂O₃晶体 的基态光谱能级;8)三角场的不考虑四种微观磁相 互作用的Ni²⁺: α-Al₂O₃晶体的基态光谱能级.其 计算结果和实验值^[12]列于表 4.

表 4 Ni²⁺ : α-Al₂O₃ 晶体的基态光谱能级 Table 4 Ground spectra level of Ni²⁺ : α-Al₂O₃ crystal

殷春浩,等:掺有 Ni²⁺的 α -Al₂O₃ 晶体的基态精细光谱、晶体局域结构和 Jahn-Teller 效应

				-			•		
	a/cm^{-1}	b/cm^{-1}	c/cm^{-1}	d/cm^{-1}	f/cm^{-1}	g/cm^{-1}	h/cm^{-1}	i/cm^{-1}	$\mathrm{Exp}/\mathrm{cm}^{-1}$
Е	0	0	0	0	0	0	0	0	0
А	1.380 9	1.238 8	1.279 6	1.414 9	1.171 2	0	0	0	1.38
Е	9 607.6	9 609	9 609.4	9 607.1	9 610.4	9 677.2	10 000	9 884.5	
А	9 808.7	9 807.4	9 812.3	9 809.3	9 811.6	9 889.6	10 000	9 884.5	9 800
Е	9 816.3	9 814.8	9 818.3	9 816.9	9 817.4	9 889.6	10 000	9 884.5	
Е	10 034	10 036	10 028	10 034	10 029	10 148	10 000	9 884.5	10 050
А	10 186	10 188	10 179	10 186	10 180	10 184	10 000	10 041	
А	10 293	10 289	10 284	10 293	10 281	10 321	10 000	10 041	
А	14 975	14 978	14 976	14 967	14 972	15 268	15 776	15 272	
А	$15 \ 162$	15 160	15 160	15 155	15 149	15 621	15 776	15 272	
Е	15 361	15 360	15 358	15 353	15 348	15 621	15 776	15 272	
Е	15 650	15 650	15 643	15 640	15 633	16 096	15 776	15 272	15 800
А	16 772	16 773	16 768	16 760	16 757	16 096	15 776	16 624	16 500
Е	16 816	16 816	16 811	16 804	16 799	16 242	15 776	16 624	16 599

2.2 Ni²⁺ : α-Al₂O₃ 晶体局域结构的计算

中心金属离子和配体之间采用最近邻点电荷模型,晶场参量 B₂₀、B₄₀、B₄₃与晶体结构 R₁、R₂、θ₁、θ₂ 满足关系^[4-5,13]

$$\begin{split} B_{20} &= -\frac{3}{2} eq \Big[\left(\frac{1}{R_1} \right)^3 (3\cos^3\theta_1 - 1) + \\ \left(\frac{1}{R_2} \right)^3 (3\cos^3\theta_2 - 1) \Big] < r^2 > \\ B_{40} &= -\frac{3}{8} eq \Big[\left(\frac{1}{R_1} \right)^5 (35\cos^4\theta_1 - 30\cos^2\theta_1 + 3) + \\ \left(\frac{1}{R_2} \right)^5 (35\cos^4\theta_2 - 30\cos^2\theta_2 + 3) \Big] < r^4 > \\ B_{43} &= \frac{3}{4} \sqrt{35} eq \Big[\left(\frac{1}{R_1} \right)^5 \sin^3\theta_1 \cos\theta_1 + \end{split}$$

$$\left(\frac{1}{R_2}\right)^5 \sin^3\theta_2 \cos\theta_2 \left] < r^4 >$$
 (4)

式中R、 θ 为键长和键角, eq为有效电荷数.

由于掺杂的 Ni²⁺离子半径(0.078 nm) Al³⁺离子 半径(0.051 nm)的不同,电子云结构差异等原因,杂 质离子 Ni²⁺取代 Al³⁺后,与周围 6 个氧配体的相互 作用将发生改变,引起局域结构的变化.采用配体平 面移动模型,设杂质离子进入基质晶体后,由于电环 境的改变,配体平面都沿 C₃ 轴移动,由于上下配体平 面所处环境相似,故移动的距离相同.设杂质离子到 上、下配体平面间距离的增量为 ΔZ ,如图 2.

图 2 配体平面移动模型

Fig. 2 Ligand palnes displacement model

在配体平面移动模型下,可以得到畸变后的局 域结构与配体平面与离子距离改变量之间的关系 为^[14]

$$R_{1} = [(R_{10} \cos \theta_{10} + \Delta Z)^{2} + (R_{10} \sin \theta_{10})^{2}]^{1/2} \\R_{2} = [(R_{20} \cos \theta_{20} + \Delta Z)^{2} + (R_{20} \sin \theta_{20})^{2}]^{1/2} \\\theta_{1} = \arctan \left[\frac{R_{10} \sin \theta_{10}}{R_{10} \cos \theta_{10} + \Delta Z}\right] \\\theta_{2} = \arctan \left[\frac{R_{20} \sin \theta_{20}}{R_{20} \cos \theta_{20} + \Delta Z}\right]$$
(5)

利用拟合所获得的晶场参量 B_{20} 、 B_{40} 、 B_{43} 可计算出 Ni^{2+} : α -Al₂O₃ 晶体的结构常量及其变化,计算结 果列于表 5.

 Ni^{2+} : α -Al₂O₃ 晶体的结构常量

Table 5	Local structure parameters	of Ni ²⁺	: α-Al ₂ O ₃ crysta
	α -Al ₂ O ₃ ^[15]	Ni^{2+} :	$lpha ext{-}Al_2O_3$, exp

R_1/nm	0.1857	0.18619
R_2/nm	0.1966	0.19714
$\theta_1/(\degree)$	63.498	63.195
$ heta_2/(\degree)$	47.536	47.364
$\Delta Z_1/\mathrm{nm}$	0.000	0.0011
$\Delta Z_2 / \mathrm{nm}$	0.000	0.0008
$\Delta \theta_1 / (\circ)$	0.000	-0.3029
$\Delta heta_2/(\circ)$	0.000	-0.1715

3 分析和讨论

表 5

3.1 Ni²⁺:α-Al₂O₃晶体基态精细光谱掺杂

对于自由 Ni²⁺ 离子,³F 为基态项,在 O_h 立方 对称晶场的作用下,³F 态分裂为³T_{1g}、³T_{2g}、³A_{2g}三 个态,其中³A_{2g}是能量最低的基态.在三角对称晶场 (C_{3v}、D₃、D_{3d})作用下,能级发生分裂:³A_{2g}→ ³A₂,³T_{1g}→³A₂+³E,³T_{2g}→³A₁+³E.在 SO 作用 下,谱线进一步分裂为 A₁、A₂、E 表示的 14 条谱线, 再加上 SS、SOO 和 OO 作用后谱线没有发生新的 分裂,只产生了平移.其能级分裂如图 3.

图 3 Ni²⁺ : α-Al₂O₃晶体基态精细光谱结构 Fig. 3 Fine structure of ground-state energy levels of Ni²⁺ : α-Al₂O₃ crystal

由表 4 中 a、f、g、h、i 和图 3 可见,自旋-轨道 (SO)相互作用使 Ni²⁺: α -Al₂O₃晶体的精细光谱由 立方对称的三条变成十条,由三角对称的五条变成 十四条,其对 Ni²⁺: α -Al₂O₃ 晶体基态精细光谱的 最大相对贡献是 84.8%. 由表 4 中 a、b 可见自旋-自旋(SS)相互作用使 Ni²⁺: α-Al₂O₃ 晶体的精细光 谱不产生新的分裂,只是发生了平移,其对 Ni^{2+} : α -Al₂O₃晶体基态精细光谱的最大相对贡献是 10.3%.由表4中a、c可见自旋-其它轨道(SOO)相 互作用使 Ni²⁺: α- Al₂O₃ 晶体的精细光谱不产生 新的分裂,只是发生了平移,其对 Ni^{2+} : α -Al₂O₃晶 体基态精细光谱的最大相对贡献是 7.4%.由表 4 中a、d可见轨道-轨道相互作用(OO)使 Ni²⁺: α -Al₂O₃晶体的精细光谱不产生新的分裂,只是发生 了平移,其对 Ni²⁺: α -Al₂O₃ 晶体基态精细光谱的 最大相对贡献是-2.5%.由此说明自旋-轨道(SO)相 互作用对 Ni²⁺:α-Al₂O₃晶体的精细光谱的贡献最 大并发生新的分裂.而自旋-自旋(SS)相互作用、自 旋-其它轨道(SOO)相互作用、轨道-轨道相互作用 (OO)对 Ni²⁺: α -Al₂O₃晶体的精细光谱都有相应 的贡献并没有发生新的分裂,只是平移,但也是不可 忽略的.

Ni²⁺离子是由于 3d⁸ 电子组态构成它与 3d² 电 子组态互为互补态,3d⁸ 电子组态可等价的看作 3d² 电子组态的空穴处理,它们具有相同的光谱项.Ni²⁺ 取代 Al³⁺离子同处于相同的 C₃,对称晶场中,在相 同的晶场环境中掺杂 Ni²⁺的离子不会改变晶体微 观结构的对称度,但是掺杂离子的价电子数和磁相 互作用的强弱不同特别是自旋-轨道作用的强弱会 改变能级的间距,对基态能级的影响更为显著.

由计算掺杂后的晶体结构常量表 5 表明,掺杂 没有改变晶体局域结构的对称性,但掺入杂质离子 后,由于离子半径、电子云结构等存在差异,杂质离 子与周围 6 个氧配体的库仑静电作用减小,破坏了 原来的晶场平衡,引起局域结构的变化,造成了上三 角配体平面都远离掺杂中心,下三角配体平面都向 掺杂中心平移.其中 Ni²⁺取代 Al³⁺后,上配体平面 之间的距离增大了 0.001 1 nm,键角舟减小了 0.302 9°, 下配体平面之间的距离增大了 0.000 8 nm,键角 θ₂ 减小了 0.1715°,掺杂后的晶体局域结构发生了一 定程度的畸变.说明除了离子半径、电价性的差异造 成了晶格畸变,还有其他因素,如电荷补偿效应、配 体电子云扩张效应等.本文的计算也说明了晶体局 域结构空间产生畸变的原因是复杂的.本文只是将 上述原因的综合效果得出的结果.要将这些原因逐 一分离并了解它们的关联有待以后的研究.

3.2 Ni²⁺ : α-Al₂O₃ 晶体的 Jahn-Teller 效应

将上述三角对称 $3d^2/3d^8$ 离子可完全对角化矩 阵,应用关系 $B_{20} = 0$, $B_{40} = 11$ 848 cm⁻¹, $B_{43}^{cubic} = -\sqrt{10/7}B_{40}^{cubic}$,退化为立方(O_h)对称可完全对角化 矩阵,不考虑自旋一轨道相互作用和自旋一自旋相 互作用,将上述得到的参量代入即为立方对称(O_h) 的可完全对角化矩阵进行对角化计算得立方对称 (O_h)下的三条谱线,即³A_{2g}、³T_{1g}、³T_{2g}.然后,由相 同的方法,把考虑到自旋一轨道相互作用和轨道-轨道 相互作用、自旋一其它轨道相互作用和轨道-轨道 相互作用(OO)的参量代入立方对称可完全对角化 矩阵进行对角化计算,得到由 T₁、T₂、E、B 构成的 10条谱线,光谱结构如图 3 左边所示.

将 B20、B40、B43代入三角 D3d 对称下不考虑各种 微观磁效应的可完全对角化矩阵,得到 $h^{3}A_{2}$ 、 T_{1} 、 T_{2} 构成的5条谱线,再加上自旋-轨道 相互作用、自旋-自旋相互作用、自旋-其它轨道相 互作用和轨道-轨道相互作用(OO)进行完全对角化 计算得到由 E、A 构成的 14 条谱线,其光谱结构如 图 3 右边所示,由图 3 和表 4 可知,对于基态项³F, 在自旋一轨道相互作用和自旋一自旋相互作用共同 作用、自旋-其它轨道相互作用及轨道-轨道相互作 用(O_h+SO+SS+SOO+OO)下的基态光谱条数 为10条.经过三角畸变(D_{3d}畸变),基态项³F,在自 旋一轨道相互作用和自旋一自旋相互作用自旋一其 它轨道相互作用及轨道-轨道相互作用的共同作用 (D_{3d}+SO+SS+SOO+OO)下基态 10 条谱线继 续分裂为14条,其中,2条T1分裂成2组E、A,2 条 T₂ 分裂为 2 组 A、E,及其它 A,E 构成了在自旋 一轨道相互作用、自旋一自旋相互作用和自旋-其 它轨道相互作用以及轨道-轨道相互作用共同作用 下的三角场(D_{3d}+SO+SS+SOO+OO)的 14 条 基态光谱线,其证实了群的理论的正确性.其中 T₁, T_2 分裂的光谱能级如图 3 箭头右边所示. 由表 2 得 到 T₁, T₂ 分裂的计算值和实验值分别列入表 6.

表 6	Ni ²⁺ :α-Al ₂ O ₃ 晶体的 Jahn-Teller 分裂
Table 6	Jahn-Teller effect of Ni ²⁺ : α-Al ₂ O ₃ crystal

	са	ıl	exp	
	1	2	1)	2
T_1/cm^{-1}	1.380 9	1122	1.38	700
T_2/cm^{-1}	7.6	199		

在 Ni²⁺: α-Al₂O₃ 晶体中自旋-自旋相互作用 和自旋-其它轨道相互作用及轨道-轨道相互作用只 会使自旋-轨道相互作用产生的精细能级产生平移, 它仅改善光谱能级与实验值的吻合程度,并不产生 新的分裂,它使考虑了自旋-自旋相互作用和自旋-其它轨道相互作用后的理论计算值和实验值更加符 合.显然, A 与 E 的分裂, E 与 A 的分裂不是自旋-自旋相互作用和自旋-其它轨道相互作用及轨道-轨 道相互作用的结果,而这种分裂对晶体结构的畸变 非常敏感,它们包含着丰富的晶体内部信息.计算表 明,立方对称的晶场不可能使 T₁, T₂ 发生能级分 裂,只有在低于立方对称的三角对称晶场与自旋-轨 道相互作用共同作用下才会产生这种分裂,二者缺 一不可. 这表明 Ni²⁺ 络离子局域结构发生了低对称 畸变,这种畸变和自旋-轨道相互作用导致了 J-T 效 应的存在. J-T 效应是对于非线性分子, Kramers 简 并的任何电子简并态[10-18],其结构是不稳定的,必将 产生电环境畸变,导致其简并态得以解除.T₁,T₂态 是轨道和自旋简并态,由于晶体结构发生了三角畸 变,再加上自旋-轨道相互作用使得 T₁,T₂ 的简并 得到了解除,从而产生了分裂,这就是 J-T 效应作用 的结果.因此在 Ni^{2+} : α -Al₂O₃ 晶体中产生 J-T 效 应的机理是三角畸变和自旋-轨道相互作用共同作 用下完成的.致于晶体中的 J-T 效应是否是由高对 称向低对称畸变和自旋-轨道相互作用共同作用下 完成的,例如立方对称向四角对称的畸变,还有待于 今后的研究证实.

5 结论

1)本文采用完全对角化方法,考虑了前人工作 中被忽略的三种微观磁作用,构造了三角对称晶场 中 3d²/3d⁸ 态离子的 45 阶可完全对角化的能量哈 密顿矩阵,计算了 Ni²⁺ : α-Al₂O₃ 晶体的基态光谱 精细结构、晶体局域结构常量,计算值与实验值相符 合.

2)自旋-轨道(SO)相互作用对 Ni²⁺ : α-Al₂O₃ 晶体的基态精细光谱的贡献最大并发生新的分裂. 而自旋-自旋(SS)相互作用、自旋-其它轨道(SOO) 相互作用、轨道-轨道相互作用(OO)对 Ni²⁺ : α-Al₂O₃晶体的精细光谱都有相应的贡献并没有发生 新的分裂,只是平移,但也是不可忽略的.

3)掺杂没有改变晶体局域结构的对称性,但使 晶体局域结构发生了一定程度的畸变.

4)在 Ni²⁺: α-Al₂O₃ 晶体的基态精细光谱中存 在 J-T 效应. 它是由自旋-轨道(SO)相互作用与晶 体场三角畸变的共同作用下产生的. 两者缺一不可. 参考文献

- FANBANK Jr W M, KLAUMINZER G K, SCHAWLOW A
 L. Excited-state absorption in ruby, emerald, and MgO :
 Cr³⁺[J]. *Physical Review B*, 1975, 11(1): 60-76.
- [2] KREBS J J, MAISCH W G. Exchange effects in the opticalabsorption spectrum of Fe³⁺ in Al₂O₃ [J]. *Physical Review* B, 1971, 4(3): 757-769.
- [3] McCLURE D S. Comparison of the crystal fields and optical spectra of Cr₂O₃ and ruby[J]. Journal of Chemical Physics, 1963, 38(9): 2289-2294.
- [4] 赵敏光. 晶体场理论[M]. 成都: 四川教育出版社, 1988.
- [5] 格里菲斯JS. 过渡金属离子理论[M]. 上海:上海科学技术 出版社,1965.
- [6] YANG Zi-yuan. Microscopic origins of the spin-Hamiltonian parameters for 3d² state ions in a crystal[J]. Acta Physica Sinica, 2004, 53(6): 1981-1988.
 杨子元. 晶体材料中 3d² 态离子自旋哈密顿参量的微观起源 [J]. 物理学报, 2004, 53(6): 1981-1988.
- [7] YIN Chun-hao, JIAO Yang, ZHANG Lei. Spectral hyper-fine structure and zero-field splitting parameters with Jahn-Teller effect of CsNiCl₃ crystal[J]. Acta Phys Sin, 2006, 55(11): 6047-6054.
 殷春浩, 焦杨,张雷. CsNiCl₃ 晶体的光谱精细结构、零场分裂

- [8] HAO Yue, YANG Zi-yuan. Magnetic interactions and microscopic spin Hamiltonian approaches for 3d³ ions at trigonal symmetry sites [J]. Journal of Magnetism and Magnetic Materials, 2006, 299(2): 445-458.
- [9] NIELSON C W, KOSTER G F. Spectroscopic coefficients for the pn, dn, fn configurations[M]. M I T Press in Cambridge, Mass, 1963:6-10.
- [10] FRAGA S, KARWOOSKI J, SAXENA K S M. Handbook of atomic data[M]. Amsterdam: Elsevier Scientific Pub Co,

1976: 151-153.

- [11] XU Chang-tan, ZHOU Zhi-ming. An investigation of the optical spectra and the EPR spectrum of Ni²⁺: LiNbO₃[J]. Spectroscopy and Spectral Analysis, 2001, 21(3): 298-300. 许长谭,周志明. Ni²⁺: LiNbO₃ 的光学吸收谱和 EPR 的研究[J]. 光谱学与光谱分析, 2001, 21(3): 298-300.
- [12] MINOMURA S, DRICKAMER H G. Effect of pressure on the spectra of transition metal ions in MgO and Al₂O₃[J]. *Journal of Chemical Physics*, 1961, **35**(3): 903-911.
- [13] 赵敏光. 晶体场和电子顺磁共振理论[M]. 北京:科学出版 社,1991.
- [14] WEI Qun, YANG Zi-yuan, WANG Can-jun, et al. Investigations of lattice distortion and spin-Hamiltonian parameters for V³⁺ in Al₂O₃ crystal [J]. Acta Physica Sinica, 2007, 56(4): 2393-2398.
 魏群,杨子元,王参军,等. Al₂O₃: V³⁺晶体局域结构及其 自旋哈密顿参量研究[J].物理学报, 2007, 56(4): 2393-2398.
- [15] CHAI Rui-peng, KUANG Xiao-yu. Theoretical study of EPR spectra and local structure for (NiO₆)¹⁰⁻ cluster in LiNbO₃ : Ni²⁺ and Al₂O₃ : Ni²⁺ system[J]. Journal of Physics and Chemistry of Solids, 2008, 69(7): 1848-1855.
- [16] YIN Chun-hao, ZANG Lei, ZHAO Ji-ping, *et al*. Effects of spin doublets on the ground-state energy levels and Jahn-Teller effects in emerald crystal[J]. *Acta Photonica Sinica*, 2006, **35**(12): 1954-1959.
 殷春浩,张雷,赵纪平,等. 绿宝石晶体自旋二重态对基态能级的影响及 Jahn-Teller 效应[J]. 光子学报, 2006, **35**(12): 1954-1959.
- [17] YANG Zi-yuan. Investigation of the electron spectra and Jahn-Teller effect of the doublet spectra structure for 2E state in Co²⁺ : ZnAl₂O₄ crystal[J]. Acta Photonica Sinica, 1997, 26(4): 298-302.
 杨子元. Co²⁺ : ZnAl₂O₄ 晶体电子光谱及其 2E 态双重谱线 结构的 Jahn-Teller 效应研究[J]. 光子学报, 1997, 26(4): 298-302.
- [18] WEI Qun, YANG Zi-yuan. Researches on fine spectra structure in YAG: Cr³⁺ crystal[J]. Acta Photonica Sinica, 2006, **35**(5): 688-692.
 魏群,杨子元. YAG: Cr³⁺ 晶体精细光谱结构研究[J]. 光子学报, 2006, **35**(5): 688-692.

Spectral Fine Structure, Local Structure and Jahn-Teller Effect of α -Al₂O₃ Crystal Doped with Ni²⁺

YIN Chun-hao, JIAO Yang, SHEN Gan, LI Fu-qiang, ZHU Shan-shan

(College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China)

Abstract: The completely diagonalized Hamiltonian matrixes of order 45 of $3d^2/3d^8$ ion configurations in the trigonal symmetry sites were established by means of crystal field theory and irreducible representation method. The Hamiltonian matrixes include four kinds of microscopic magnetic interactions: spin-orbit interaction, spin-spin interaction, spin-other-orbit interaction and other-orbit-other-orbit interaction. The spectral fine structure and crystal local structure of Ni²⁺ : α -Al₂O₃ crystal were calculated by the Hamiltonian matrixes. Meanwhile, the four kinds of interactions and their effects to the spectral fine structure and the Jahn-Teller effect were also analyzed. The calculated values were conformed with the experimental values. The results show that doping Ni²⁺ ions cannot change the symmetry, and it was discovered and explained the existence mechanism of Jahn-Teller effect in spectral fine structure of α -Al₂O₃ doped with Ni²⁺.

Key words: α -Al₂O₃; Doping; Local structure

YIN Chun-hao was born in 1959. He graduated from Xuzhou Normal University in 1981 and received his Ph. D. degree in magnetic physics from Okayama University, Japan in 2000. Now he is a professor at Physics Department of China University of Mining and Technology. His research interests are magnetic physics and crystal filed theory.